

ELIZADE UNIVERSITY, ILARA-MOKIN, NIGERIA

FACULTY: BASIC & APPLIED SCIENCES

DEPARTMENT: BIOLOGICAL SCIENCES

FIRST SEMESTER EXAMINATION

2017/2018 ACADEMIC SESSION

COURSE CODE:	EMT 303	
COURSE TITLE:	METHODS IN ENVIRONMNETAL ANALYSIS II	c f
DURATION:	2 HOURS	HOD's SIGNATURE
NAME:		
MAT. No:		
INSTRUCTIONS	Attempt any four questions in all	

Attempt any four questions in all

- 1. (a) Briefly describe the preparation of a liquid sample for infra-red spectroscopy
 - (b) In which region of the infrared spectrum sis the finger print region and what is the importance of this region?
 - (c) What are the light sources employed in Atomic Absorption Spectrophotometry?
 - (d) What are the applications of Infra-red spectroscopy?
 - (e) A sample in 1cm cell is determined with a spectrophotometer to transmit 55% light at a wavelength of 450 nm. If the molar absorptivity at this wavelength is 2.00 L mol⁻¹ cm⁻¹, calculate the absorbance and concentration of the sample.
- 2. (a) What do you understand by the terms Electromagnetic Radiation (EMR) and Electromagnetic Spectrum (EMS)
 - (b) Explain the principle of absorption spectroscopy
 - (c) List the three types of energy changes accompanying absorption of EMR and explain any one.
 - (d) Draw a schematic diagram of a double beam UV/ visible spectrophotometer.
 - (e) Mention the light sources for a UV/ visible spectrophotometer and three applications of UV/ visible spectrophotometry
- 3. (a) Define Beer-Lambert's law and list the deviations from Beer-Lamberts law.
 - (b) What are Chromophores and Auxochromes. Give two examples in each case
 - (c) List three limitations and two applications of Flame Atomic Emission Spectrophotometry
 - (d) What are Bathochromic and Hypochromic shifts?
 - (e) A compound has a molar absorptivity value of 8.40 L mol⁻¹cm⁻¹, when path length is 1 cm and Absorbance 0.70. What is the concentration of the compound?
- 4. (a) Infra-red region of the EMS is divided into three regions. List the regions (with their ranges) and which of the regions is the most analytically useful.
 - (b) Calculate the number of possible theoretical vibrational modes for a linear Ethyl methyl ketone (CH3-CH2-CO-CH3) and a non-linear carbon dioxide molecule

- (c) What are the light sources and types of detector used in infrared spectroscopy?
- (d) Mention the most common instruments used in IR spectroscopy
- (e) What are the two modes (types) of molecular vibrations in molecules that are infra-red active and list the different types of this modes.
- 5. (a) Describe the techniques involved in photometric titration
 - (b) Differentiate between circular dichroism and optical rotatory dispersion
- 6. (a) Explain the principles, uses and limitations of flame photometry
 - (b) Describe the principle of polarimetry.